Two Rapid Methods to Identify Three Species of Pathogenic Vibrio in *Penaeus vannamei*

Kai Luo¹, Hanwen Yuan¹, Wenbing Zhang¹,², Qiaoqing Xu¹,³*

¹School of Animal Science, Yangtze University, Jingzhou 434020, China;

²The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China;

³Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China.

Keywords: *Penaeus vannamei*; *Vibrio fluvialis*; *Vibrio anguillarum*; *Vibrio alginolyticus*; multiplex PCR; qPCR

Abstract

Vibrio species frequently infect *Penaeus vannamei* causing great economic losses to the Whiteleg shrimp industry. Rapid detection of pathogenic *Vibrio* infection would improve the fight against these diseases. In this study, single and multiple polymerase chain reaction (PCR) methods were developed to detect three species of pathogenic *Vibrio*: *Vibrio fluvialis*, *Vibrio anguillarum*, and *Vibrio alginolyticus*. Specific primers were designed for the toxR gene of *V. fluvialis*, the flaA gene of *V. anguillarum*, and the pyrH gene of *V. alginolyticus*. The bacteria were used as templates to establish a 25 µL reaction system for PCR amplification. The results showed that single and specific PCR amplification products of expected sizes were obtained (228bp, 1665bp, and 383bp, respectively). The lowest concentration detected for the three *Vibrio* species were 5.21×10^2, 2.70×10^4, and 2.48×10^2 colony forming units (cfu)/mL, respectively. We also developed a multiplex PCR method to identify the three *Vibrio* species accurately, and with improved identification efficiency. In addition, quantitative real-time PCR (qPCR) was used to identify the minimum detectable DNA concentration for the three *Vibrio* species (1.0×10^{-6} nmol/L for *V. fluvialis*, 1.0×10^{-7} nmol/L for *V. anguillarum*, and 1.0×10^{-8} nmol/L for *V. alginolyticus*). Technical requirements for ordinary PCR are low, therefore PCR is a feasible technique to detect and diagnose *Penaeus vannamei* bacterial disease.

* Corresponding author. e-mail: xuqiaoging@yangtzeu.edu.cn