Pigmentary and Zootechnical Responses of Juvenile *Litopenaeus vannamei* (Boone, 1931) Maintained on Diets Supplemented with Xanthophylls of Marigold *Tagetes erecta* Flowers

Eduardo Aguirre-Hinojosa1,2, María del Carmen Garza-Aguirre1,2, Pablo Piña-Valdés1*, Ricardo Montoya-Olvera3, José Odón Torres-Quiroga3, Mario Nieves-Soto1

1 Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México

2 Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo, Sonora, México

3 Industrial Orgánica S.A. de C.V. Monterrey N.L. México

(Received 31.1.12, Accepted 13.3.12)

Key words: xanthophylls, marigold, pigmentation, survival, *Litopenaeus vannamei*

Abstract

Practical diets supplemented with 75 or 150 ppm xanthophylls (75% zeaxanthin, 15% lutein) industrially extracted from marigold (*Tagetes erecta* L.) flowers increased the astaxanthin and total carotenoid concentrations in juvenile *Litopenaeus vannamei*, compared to shrimp fed a practical control diet. Our results paralleled or exceeded those obtained with a diet containing 75 ppm supplementary synthetic astaxanthin. The post-feeding astaxanthin concentration accounted for more than 84% of the total carotenoid concentration in shrimp fed either diet, while beta-carotene, zeaxanthin, lutein, and other non-identifiable carotenoids comprised a minority of the total concentration. That this was seen in both the tail exoskeleton and abdominal muscle indicates that *L. vannamei* can metabolize precursor xanthophylls to produce astaxanthin. In most cases, more than 60% of the astaxanthin was esterified. In general, survival improved in shrimps fed the supplemented diets compared to those fed the control diet. There were no differences in growth.

* Corresponding author. E-mail: pablopina@live.com.mx