EFFECTS OF DIETARY FISH OIL, SOY-ACID OIL, AND YELLOW GREASE ON GROWTH AND HEPATIC LIPIDOSIS OF HYBRID TILAPIA FRY

Ercument Genc1*, Erdal Yilmaz2 and Ihsan Akyurt2

1 Programme of Fish Diseases, Faculty of Fisheries and Aquaculture, Tayfur Sokmen Campus, Mustafa Kemal University, 31040, Antakya, Hatay, Turkey
2 Programme of Aquaculture, Faculty of Fisheries and Aquaculture, Tayfur Sokmen Campus, Mustafa Kemal University, 31040, Antakya, Hatay, Turkey

(Received 8.12.04, Accepted 6.2.05)

Key words: hybrid tilapia fry, soy-acid oil, yellow grease, hepatic lipidosis

Abstract
The objective of this study was to compare the effects of dietary lipids on growth and liver histopathology of hybrid tilapia, Oreochromis niloticus x O. aureus, fry (6.0 g). Fish were fed one of six diets containing 8.4% fish oil (control), 8.4% soy-acid oil, 8.4% yellow grease, 5.6% yellow grease plus 2.8% soy-acid oil, 2.8% yellow grease plus 4.6% soy-acid oil, or 4.2% soy-acid oil plus 4.2% yellow grease for 60 days. Growth was similar in all groups and retarded in comparison to earlier studies. Lipid accumulation as well as microvesicular (foamy degeneration) and macrovesicular degeneration in the liver were histopathologically detected.

Introduction
The demand for fish oil, the most frequently-used oil in the fish feed industry, is predicted to exceed resources within the next decade (Barlow and Pike, 1999). Partial or total replacement of fish-based feeds by vegetable meals and oils is important for the development of aquaculture (Kaushik, 2004). Recent studies demonstrated that, in some tropical fish, up to 90% of the dietary fish oil can be replaced by vegetable oils without causing problems to growth or feed utilization (Ng et al., 2000; Lim et al., 2001). Soy-acid oil was used as an alternative vegetable lipid source in broiler diets in the

* Corresponding author. Tel.: +90-326-2455843/1302, fax: +90-326-2455817, e-mail: egenc@mkku.edu.tr or ercumentgenc@yahoo.com
91

1980s (Sevgican et al., 1986) and later in rain-
bow trout diets (Canyurt et al., 1991). In both
studies, a supplementary lipid level of approx-
imately 8.0% improved growth parameters.
Yellow grease has also been used in broiler
diets and consists of vegetable and animal
lipid sources. The low cost and year-round
availability of soy-acid oil and yellow grease
justifies investigating the use of these
lipid sources in aquafeeds.

As in other vertebrates, the type of lipid
affects growth parameters, body composition,
and the histological structure of organs in fish
(Dossanjh et al., 1984). Lipid metabolism is
mainly regulated by the liver. Fat storage
affects fat metabolism, uptake of dietary fat,
mobilization of fatty deposits as in acute dis-
eases, and synthesis or degradation of fatty
acids, triglycerides, cholesterol, and lipopro-
teins. Thus, when dietary lipid or energy
exceeds the capacity of the hepatic cells to
oxidize fatty acids, or when protein synthesis
is impaired, the result is synthesis and deposi-
tion of large amounts of triglycerides in vac-
uoles, leading to the morphological condition
known as steatosis or hepatic lipidosis.
Steatosis is associated with nutritional imbal-
ances in cultured fish (Tacon, 1996; Caballero
et al., 2004).

The aim of this study was to compare the
effects of dietary soy-acid oil and yellow
grease on growth parameters and liver mor-
phology in hybrid tilapia, Oreochromis niloti-
cus x O. aureus, fry.

Materials and Methods
Six practical diets were formulated (Table 1).
For each diet, the major ingredients were
ground (<500 µ) and mixed, and warm water
(40°C) and the lipid source(s) were added into
the blend. The resultant dough was passed
through a 2 mm diameter die in a food grinder.
The pellets were dried at 45°C and stored at
4.0±1.0°C until use.

Hybrid tilapia fry (Oreochromis niloticus x O.
aureus; 6.0 g) were obtained from a local
fish hatchery (DSI, the VIth regional direc-
torate of the state hydraulic works, Adana,
Turkey) and stocked at 15 fish per 96-l glass
aquaria in 18 aquaria (triplicates of six treat-
ments). After 10 days acclimation, the
experimental diets were given the fish ad
libitum each day at 10:00-16:00. The daily
water exchange rate was 80%. Water
remained at the constant temperature of
25±1°C. Oxygen varied 6.2-6.5 mg/l, pH 7.82-
8.33, and total alkalinity 250-255 mg CaCO3/l.
The feeding trial was conducted for two
months.

The proximate compositions of the diets
and fish fillets were analyzed according to
AOAC (1997) procedures as follows: moisture
was determined by oven-drying at 105°C for
24 h, crude protein (N x 6.25) by the Kjeldahl
method, and crude ash by combustion in a
muffle furnace at 550°C for 16 h. Total lipid
concentration was determined by extract with
the chloroform-methanol method described by
Bligh and Dyer (1959). On completion of the
feeding trial, all fish were starved for 48 h,
killed, and weighed. All fish were dissected to
determine hepatosomatic index values and for
histopathological examination. Liver speci-
mens were manually fixed (4% neutral
buffered formaldehyde) for histology and
embedded in paraffin wax. Sections (5 µ)
were cut and mounted on glass slides (Leica)
before staining with Mayers Hematoxylin and
Eosin (H&E). Stained sections were examined
and photographed under a light trinocular
(Olympus BX50) microscope (Takashima and
Hibiya, 1995). Data were statistically analyzed
with one-way ANOVA and Duncan’s multiple
range tests (SPSS for Windows, version
10.01. Chicago, IL).

Results
There were no significant differences in
weight gain, feed conversion ratio, or body
indices among the treatment groups (Table
2). No mortality was observed. From highest
to lowest, liver degeneration (HSI) was: diet
2>6>5>3>4>1 and lipid degradation of the fish
muscles (VSI) was diet 1>2>4>6>3>5, with no
significant differences. There were some sig-
ificant differences in final carcass composi-
tions among groups.
Lipid accumulation as well as microvesic-
ular (foamy degeneration) and macrovesicular
degeneration in the liver were histopathologi-
cally detected (Fig. 1). Severe hepatic lipido-
sis was especially observed in Diets 2, 3, and
4. Also steatotic cells, large extracellular fat
globules, disruption of the hepatic microcircu-
lation, and hepatocyte abnormalities (cyto-
plasmic clarification) associated with steatosis
were found.

Table 1. Composition (%) of the experimental diets.

<table>
<thead>
<tr>
<th>Diet</th>
<th>8.4% fish oil</th>
<th>8.4% soy-acid oil</th>
<th>8.4% yellow grease</th>
<th>5.6% yellow grease plus</th>
<th>2.8% soy-acid oil</th>
<th>4.2% soy-acid oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet no.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Fishmeal</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Corn bran</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Cotton seed cake</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
</tr>
<tr>
<td>Fish oil<sup>1</sup></td>
<td>8.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yellow grease<sup>2</sup></td>
<td>-</td>
<td>8.4</td>
<td>-</td>
<td>5.6</td>
<td>2.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Soy-acid oil<sup>2</sup></td>
<td>-</td>
<td>-</td>
<td>8.4</td>
<td>2.8</td>
<td>5.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Premix<sup>3</sup></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DCP</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Protein</td>
<td>36.67</td>
<td>36.67</td>
<td>36.67</td>
<td>36.67</td>
<td>36.67</td>
<td>36.67</td>
</tr>
<tr>
<td>Lipid</td>
<td>12.36</td>
<td>12.36</td>
<td>12.36</td>
<td>12.36</td>
<td>12.36</td>
<td>12.36</td>
</tr>
</tbody>
</table>

¹ Fish oil was obtained from a factory in Sinop, Turkey, that processes anchovies for fishmeal.
² Yellow grease and soy-acid oil were purchased from a factory in Istanbul that processes the wastes of different oil sources.
³ Premix (for 1 kg diet): 5,000,000 IU vitamin A; 1,250,000 IU vitamin D; 12,500 mg vitamin E; 1,250 mg vitamin K₃; 750 mg vitamin B₁; 2,000 mg vitamin B₂; 15,000 mg niacin; 5,000 mg cal-
pan; 1,750 mg vitamin B₆; 8 mg vitamin B₁₂; 375 mg folic acid; 25 mg biotin; 50,000 mg vitamin C; 225,000 mg choline chloride; 12,500 carophyll red; 2,500 mg carophyll yellow; 50,000 mg Mn; 50,000 mg Fe; 50,000 mg Zn; 10,000 mg Cu; 150 mg Co; 800 mg I; 150 mg Se.

Discussion

Some warm water fish species such as *Tilapia zillii* (El-Sayed and Garling, 1988), *African catfish* (*Clarias gariepinus*; Lim et al. 2001), and *sunshine bass* (*Morone chrysops x M. saxatilis*; Keembiyehetty and Wilson, 1998) efficiently use dietary lipids up to a cer-
Table 2. Growth, body indices, and carcass composition of *Oreochromis niloticus* x *O. aureus* fry fed one of six experimental diets (means of triplicate groups of five fish).

<table>
<thead>
<tr>
<th>Diet</th>
<th>8.4% fish oil</th>
<th>8.4% soy-acid oil</th>
<th>8.4% yellow grease</th>
<th>5.6% yellow grease plus 2.8% soy-acid oil</th>
<th>2.8% yellow grease plus 5.6% soy-acid oil</th>
<th>4.2% yellow grease plus 4.2% soy-acid oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet no.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Initial weight (g)</td>
<td>6.51±0.02</td>
<td>6.40±0.06</td>
<td>6.53±0.03</td>
<td>6.38±0.09</td>
<td>6.40±0.03</td>
<td>6.24±0.11</td>
</tr>
<tr>
<td>Final weight (g)</td>
<td>16.13±0.56<sup>a</sup></td>
<td>14.98±0.42<sup>a</sup></td>
<td>15.37±1.11<sup>a</sup></td>
<td>14.64±0.38<sup>a</sup></td>
<td>14.35±0.27<sup>a</sup></td>
<td>14.35±0.64<sup>a</sup></td>
</tr>
<tr>
<td>Weight gain (g)</td>
<td>9.62±0.56<sup>a</sup></td>
<td>8.58±0.35<sup>a</sup></td>
<td>8.83±1.08<sup>a</sup></td>
<td>8.27±0.45<sup>a</sup></td>
<td>7.95±0.28<sup>a</sup></td>
<td>8.11±0.63<sup>a</sup></td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>1.67±0.09<sup>a</sup></td>
<td>1.76±0.07<sup>a</sup></td>
<td>1.87±0.19<sup>a</sup></td>
<td>1.95±0.10<sup>a</sup></td>
<td>2.01±0.07<sup>a</sup></td>
<td>1.95±0.11<sup>a</sup></td>
</tr>
<tr>
<td>HSI (%)</td>
<td>1.81±0.13<sup>a</sup></td>
<td>2.12±0.14<sup>a</sup></td>
<td>1.93±0.14<sup>a</sup></td>
<td>1.92±0.10<sup>a</sup></td>
<td>2.01±0.09<sup>a</sup></td>
<td>2.02±0.10<sup>a</sup></td>
</tr>
<tr>
<td>VSI (%)</td>
<td>10.08±0.92<sup>a</sup></td>
<td>10.05±0.43<sup>a</sup></td>
<td>9.94±0.20<sup>a</sup></td>
<td>10.04±0.42<sup>a</sup></td>
<td>9.87±0.38<sup>a</sup></td>
<td>9.97±0.57<sup>a</sup></td>
</tr>
<tr>
<td>K (%)</td>
<td>1.47±0.02<sup>b</sup></td>
<td>1.51±0.04<sup>ab</sup></td>
<td>1.52±0.03<sup>ab</sup></td>
<td>1.51±0.04<sup>ab</sup></td>
<td>1.62±0.04<sup>a</sup></td>
<td>1.50±0.03<sup>ab</sup></td>
</tr>
<tr>
<td>Carcass composition<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter</td>
<td>24.73±0.16<sup>b</sup></td>
<td>27.43±1.85<sup>a</sup></td>
<td>26.68±0.95<sup>a</sup></td>
<td>26.57±0.06<sup>a</sup></td>
<td>27.06±1.55<sup>a</sup></td>
<td>27.58±0.69<sup>a</sup></td>
</tr>
<tr>
<td>Ash</td>
<td>1.62±0.13<sup>b</sup></td>
<td>1.52±0.07<sup>b</sup></td>
<td>1.81±0.13<sup>a</sup></td>
<td>1.46±0.08<sup>b</sup></td>
<td>1.45±0.04<sup>b</sup></td>
<td>1.39±0.04<sup>b</sup></td>
</tr>
<tr>
<td>Protein</td>
<td>19.25±0.38<sup>b</sup></td>
<td>22.36±1.93<sup>a</sup></td>
<td>22.15±1.01<sup>a</sup></td>
<td>22.16±0.13<sup>a</sup></td>
<td>22.95±1.58<sup>a</sup></td>
<td>22.14±0.81<sup>a</sup></td>
</tr>
<tr>
<td>Lipid</td>
<td>3.85±0.08<sup>ab</sup></td>
<td>3.55±0.07<sup>b</sup></td>
<td>2.72±0.08<sup>c</sup></td>
<td>2.96±0.15<sup>c</sup></td>
<td>2.66±0.07<sup>c</sup></td>
<td>4.05±0.07<sup>a</sup></td>
</tr>
</tbody>
</table>

Means in rows with different superscripts are significantly different (p<0.05).

1 Hepatosomatic index = (liver wt/total body wt) x 100
2 Visserosomatic index = (viscera wt/total body wt) x 100
3 Condition factor = (total body wt/length³) x 100
4 Initial carcass composition was 22.55±0.02% dry matter, 2.81±0.76% ash, 15.63±0.58% protein and 4.11±0.15% lipid.
Fig. 1. Hepatic lipidosis (hepatocellular vacuolization) in Oreochromis niloticus x O. aureus fry stained with hematoxylin and eosin. L = large lipid droplet, C = capillary, M = microvesicle, N = hepatocyte nucleus, Cl = cytoplasmic clarification. Diet 1: diffuse micro and macrovesicular degeneration (x 80); diet 2: diffuse macrovesicular, centrilobular degeneration, with diffuse microvesicular vacuolar change (x 100); diet 3: fat in macrovesicles peripheral nuclei, no cellular damage (x 100); diet 4: normal or slightly moderate macro and severe micro vacuolization (x 100); diet 5: fat in microvesicles and fine droplet fatty changes (large clear bubbles or vacuoles within the liver cells; x 100); diet 6: fatty change with macrovesicular fat showing a slight (upper side) predominance and cytoplasmic clarification (hepatocyte abnormalities) associated with steatosis (x 80).
tain level. Other authors found that the muscle lipid content of sea bass and hybrid striped bass is unaffected by the dietary lipid level (Peres and Oliva-Teles, 1999; Gaylord and Gatlin, 2000). The levels of dietary lipids were equal in all treatments in the present study yet the muscle lipid contents were higher in diets 1, 2, and 6 than in diets 3, 4, and 5 and than found in other studies (Samantaray and Mohanty 1997; Mathis et al., 2003). Thus, a direct relationship was not found between the dietary and muscle lipid contents. Slightly higher percentages of muscle lipid and lipid accumulation in the liver were detected in soy-acid oil group, perhaps as a result of different digestibility of the lipid source.

Nutritional and pathological studies of high lipid inclusion or nutritional imbalances in fish diets support our pathological findings (Tacon, 1996; Spisni et al., 1998; Caballero et al., 1999, 2002; Manera, 2003). In fatty liver, lipid accumulates in the cytoplasm of hepatocytes creating large clear vacuolar spaces within the cells that are visible in H&E stained sections. The nuclei of such cells are pressed to the periphery of the cell. These changes occur with various types of liver degeneration in higher vertebrates, including the early stages of cirrhosis (Eriksson et al., 1986; Bacon et al., 1999; Reid, 2001). The effects of lipid in the correct functioning of the liver and possible reversibility are not well understood. Some authors consider steatosis a physiological adaptation to the diet (Segner and Witt, 1990; Caballero et al., 1999) while others stress the pathological significance of steatosis (Mosconi-bac 1990) even if necrosis or cellular damage is not found, arguing that longer periods of feeding would irreversibly damage the tissue (Caballero et al., 2004). In the current study, the lipid level was the same in all treatments yet lipid degeneration varied. Perhaps the different lipid sources had different levels of digestibility and some accumulated more in the viscera than in the carcass (Murai et al., 1985).

In conclusion, the present study showed that the inclusion of vegetable oils in pelleted feeds did not change the growth performance or feed conversion rate. While inclusion of yellow grease or soy-acid oil might be desirable for economic reasons, the histopathological findings show that this is harmful to fish health. Therefore, it is recommended to continue using fish oil in feeds for tilapia fry.

Acknowledgements
The authors would like to thank Dr. Mehmet Gokce (Pathology Department, Turkish Naval Forces Hospital, Iskenderun, Turkey), R. Yuce Uyanik (International Trade Department, Faculty of Applied Disciplines, Bosphorus University, Istanbul), and Dr. Mustafa Oral (Faculty of Architecture and Engineering, Mustafa Kemal University) for their invaluable assistance. This work was supported in part by grants from the Scientific Research Foundation of the Mustafa Kemal University.

References

